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ADVANCED EXPERIMENTAL TECHNIQUES IN CRACK TIP MECHANICS

by

A. S. Kobayashi
University of Washington

Department of Mechanical Engineering
Seattle, Washington 98195

ABSTRACT

-.zAdvanced experimental techniques in crack tip mechanics are discussed

under three categories of 2- and 3-D linear elastic 2-D elasto-plastic and

2-D dynamic fracture mechanics. Specific techniques which were discussed are

acousto-elasticity, frozen stress-moire techniques isodyne photoelasticity,

moire techniques laser speckle method, hybrid experimental-numerical analysis

and caustic method.

INTRODUCTION

The experimental techniques for cr&ck tip mechanics of the 1970's were

governed by the practical requirements for determining accurately 2- and 3-D

stress intensity factors in linear elastic fracture mechanics (LEFM). The

extensive applications of three-dimensional frozen-stress phototelasticity

(l) Interferometry (2) and moire method [3) yielded static stress intensity

factors for complex boundary value problems# such as a corner flaw at a

nozzle-cylinder Junction and at a through hole [4) and a compact specimen [53.

Dynamic stress intensity factors determined by the extensive use of dynamic

photoelasticity (6. 7) and dynamic caustics [8, 93 provided considerable

insight to the controversial criteria for dynamic fracture and crack arrest.

Dynamic photoelasticity and dynamic caustics were also used to establish

dynamic crack curving and branching criteria [10, 113P which are also appli-

cable to static and quasi-static crack problems# and to repudiate the proposed

fracture mechanics interpretation of the V-notched Charpy data [12). These

experimental techniques, which are constantly being improved to determine

well-defined physical quantities, i.e.. the stress intensity factors, have

contributed to the credibility which linear elastic fracture mechanics com-

mands, in postmortem failure analysis and life-time prediction of structural

components.
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The inevitable extensions of linear elastic fracture mechanics to

fracture of composites# fatigue crack extension and stable crack growth as

well as ductile fracture have imposed a new role onto the above experimental

techniques. The experimental results are now also used to identify the

physical laws and associated physical parameters governing these fracture

phenomena. The search for these unknown physical parameters requires

increased experimental accuracy as well as advanced data processing technique

in the presence of geometric and material nonlinearities encountered In

nonlinear fracture mechanics.

The purpose of this paper is to review the advances made in the

established experimental techniques as well as to report on new experimental

techniques for analyzing the traditional as well as new problems in crack tip

mechanics. The techniques are discussed under three categories of 2- and 3-D

linear elastic, 2-D elasto-plastic and 2-D dynamic fracture mechanics.

2-D Linear Elastic Fracture Mechanics

Acousto-el asticity

Acousto-elasticity, which was hailed as an analog to photoelasticity for

opaque materials in 1959 [13)P failed to achieve wide acceptance due to the

unresolved transducer coupling effect and high sonic attenuation [14). The

resurgence of acousto-elasticity in the 1980's is due in parts to improve-

ments in the instrumentation techniques but is mainly attributed to the

ability for processing large amounts of ultrasonic data by a computer-

controlled scanning system (15]. Since longitudinal ultrasonic waves provide

information only on plane-stress isopachics (sum of principal stresses)# the

use of shear waves measurementst which are referred to as acoustic birefrin-

gence, is more widely used today. Influence of the Inherent acoustic anisotro-

py (texture) in the material can be modeled by orthotropic elasticity theory

which involves three acousto-elastic constants [16, 17]. The acoustic bire-

fringence equation becomes

B {[B 0 + MI (01 + 02) + M2 -.a2cos201

(1)
+ [M3(a1 - 2)sln 26]2}1/2
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where 80 is the initial birefringence of the unstressed state. M1, 2 and N3

are the three acousto-elastic constants.

The angle between the initial and stressed acousto-elastic axes, which in

general do not coincide with the principal stress axes, is

a 3(a - a2 )sin 20
tan 2 = B + (a 1 + 02) + M(a1 - a2 )cos 20 (2)

*The shear stress in the xy plane is then given by

B sin 20 (3)
axy =2 3

Clark, Mignogna and Sanford E18) used the above relations to measure the

stress Intensity factor in a 2024-7351 aluminum compact specimen shown in
Figure 1. A pulse-echo-overlap system, as shown in Figure 2, was used to

determine point-by-point, the orientation of the acoustic axes and the

acoustic birefringence in the 51 x 51 mm square region shown in Figure 1. A

10 14Hz ac-cut quartz shear-wave transducer of 1.8-rm diameter was used in a
manual scanning process. The estimated accuracy were approximately 55 and ± 2

degrees in birefringence and measurements, respectively.

The acousto-elastic birefringence generated from 66 data points in the

square region was reconstructed and Sanford's procedure [193 was used to

compute five coefficients in the LEFM crack tip stress field by averaging the

results of 100 computations using 20 randomly selected data points each time.

Good agreement between the corresponding coefficients, which were obtained

from a similar photoelasticity experiment, were noted. The stress intensity

factor was computed from the coefficient of the first term or the 1/F( term

in the above polynomial crack tip stress field.

The acousto-elastic technique is one of the few static, stress analysis
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techniques available for opaque materials. As in 2-D photoelasticity, the

thickness-averaged acoustic birefringence Is not subject to the plane stress

constraint of the caustic method. Obvious improvement in the technique can be

made by incorporating an automated scanning procedure with real-time data

processing which has been used by others [15). Yet to be explored is the

physical significance of acoustic birefringence associated with the crack tip

plastic region associated with ductile fracture.

3-D Linear Elastic Fracture Mechanics

Frozen Stress-Moire Technique

The hybrid technique# which utilizes both frozen stress# 3-0 photo-

elasticity and moire interfermetry, provides the complete information for

characterizing the crack tip state [203. The procedure is redundant In that

the in-plane displacement field, which is determined by the high resolution

moire technique (21]P also defines the strain and stress fields. The iso-

chromatics, however, can be used to verify the accuracy of the stresses

which are obtained by numerically differentiating the displacements. Such

optimum use of the redundant experimental data is yet to be explored.

The procedure consists of applying an aluminum reflective grating to the

slices cut from the frozen-stress 3-D photoelastic model and returning the

slice to its unloaded stage by annealing through its critical temperature.

The in-plane displacements are obtained by moire interferometry of the

deformed grating superimposed onto an undeformed virtual grating with a
grating density of 2400 lines per m. Figure 3 shows experimental setup for

viewing the Moire fringes. The In-plane displacements of un and uz are

related to the stress intensity factor by:

For plane strain,

U =- j cos7[1- 2v+ sin 2 -]

(4)

u "-j 7 sin L2 K 2Acos 2 -]

,°. 2 2 v



For plane stress,

:4
KAP'r 1-V 2

'g4U = _GTirj sin 7 i++ sin
n (5)

= lAp " sinK [ 2 2 6
U 5 - ~ i 7I + o

where G is shear modulus of elasticity,

v is Poisson's ratio

The photoelastic-moire technique was used to determine the variation in

stress intensity factor along a straight crack front in a four-point bend

specimen of 279.4 x 25.7 x 13.3 mm size after ASTN E399. Figure 4 shows the

stress intensity factors at the center slice of this cracked beam determined

by both photoelasticity and moire interferometry for a crack depth to beam

ratio of 0.5. The reference Kth in Figure 4 was determined by 2-D plane
strain analysis [22). Figure 5 shows the variation of stress intensity factor

through the thickness of the beam. A state of plane stress and the presence

of a 1/(-r singularity were assumed in the data reduction process.

While the uncertainties in the relaxation mechanism as well as the

resultant state of stress associated with the annealing process require

further studies, the frozen stress-moire techniques provides a mean for

complete and detailed stress analysis of the crack tip state in 3-D linear

elastic fracture mechanics.

Isodyne Photoelasticity

Isodyne represents curves of constant intensity of the normal forces

acting on the characteristic curves in a plane stress field and are thus

related to the first derivatives of the Airy stress function. Two isodyne

fields related to two orthogonal characteristic curves completely define the

* elastic state of plane stress [23). When modeled optically with the inte-

grated polariscope, shown in Figure 6 [24), the photoelastic isodynes resemble

6



the isochromatics generated by scattered light photoelasticity. Stmlar to

scattered 1ight photoelasticity# optical inhomogeneity generated by the high

stress gradient in the vicinity of the crack tip may distort the photoelastic

Isodyne. The requirement for a plane stress state, which is not a prerequi-

sit In scattered light photoelasticity, can be modulated by the "semi-plane

stress state* used by Pindera et al. E25) who then dete-mined the stress

Intensity factor at the midsection, i.e. plane of symmetry# of a four-point

bend specimen shown in Figure 7. Also shown in Figure 7 is the variation in

the stress intensity factor computed for various crack tip distance where a

pronounced effect of the near-tip nonlinearity and crack tip bluntness are

noted.

Asssuming that the influence of optical inhomogeneity in the scattered

light path can be quantified, the photoelastic isodyne technique share the

same advantage of 3-D scattered photoelasticity which can be used to analyze

the crack tip state of stress under live load. The stress intensity factor

can be computed more accurately if K is expressed directly In terms of the

isodyne value thus eliminating the extra numerical differentiation process in

obtaining the stresses.

2-0 Elasto-Plastic Fracture Mechanics

The experimental techniques listed in this section obviously can be used

for elastic analysis but unlike the above, are not limited to elastic

analysis.

Moire Technique

The use of moire technique in elasto-plastic fracture mechanics is not

new [3, 26). Despite its obvious application to high temperature* nonlinear

problems in fracture mechanics, literature is relatively sparse in the frac-

ture mechanics interpretation of the crack tip displacement field determined

by the moire method. Exception to the above is the analysis of externally

notched rings sliced from a Type 304 stainless tube, 7.1-mm O.D. and 0.38 m

thick, with electro-etched cross-line gratings of 40 lines per mm and subjec-

ted to a simulated internal pressure at 1100 F [27). Figure 8 shows the

experimental setup for recording the distorted grating which was analyzed by

master gratings of 4 and 8 lines/mm. From the resultant u and v moire fringe

patterns, OD for slow-crack growth initiation was found to be

7



COD = 0.976 • a a 15.78 (6)

where the crack length a and the applied hoop stress * are represented in
terms of m and KN, respectively.

Figure 9 shows that the initiation COD in this experiment remained
relatively constant despite the changes In the crack tip bluntness. Sciam-

marella then estimated the 3-integral for the Initiation of slow crack growth
by the following approximate formula after Rice et al. (28).

1 bcr -rJ 1 c
= i[ 2  o Pd6cr - Pr6cr] (7)0

where b is the ligament length, t is the specimen thickness, 6 is the dis-
cr

placement due to the presence of the crack between two reference sections for

the load at the moment of crack initiation and

(8)
p=

where a is the hoop stress and A the specimen cross-sectional area. The

values of 6 were obtained ascr
6cr 6total - 6nocr (9)

where 6 is the displacement between two reference cross sections and
total

6nocr is the displacement given by
6nocr h (10)

Moire method, which was limited in its applications to fracture problems

involving large scale yielding due its low sensitivity, can be used in the

high sensitivity region of linear elastic fracture mechanics by the recent

developments in high density line gratings upto 4000 lines per mm with grating

sizes upto 100 x 63 mm [29]. The use of virtual grating# which was described

previously, eliminates the need for physical contact of the reference grating.

Its use at elevated temperature testing, such as that described above, or

under an explosive loading condition may be In doubt since the long optical

paths, which is required in the experimental setup, may be distorted by the

. . . -.., -.. . , ., .. . . . -... ,. . . .. : ... ...- . . . . .. , .. .. . .. . .. : .: .-. . . ., .. .. .. . . .. . - . . ... . .. .. , / ., .,.8,



TABLE I

i in For Ring Specimen at 1100 0F

Ring P-6V 3 i
9 ~ 104 m

10.0682 0.03980
2 0.0565 0.05554
3 0.0455 0.04755
4 0.0661 0.04520
5 0.0517 0.04762
6 0.0298 0.02206
7 0.0684 0.04681
8 0. 0421 0.03484
9 0. 0709 0. 04742

Table 1 shows the excess variations in the 3 estimated by this procedure thus

leading this author to conclude that COD is a better criterion for predicting

the initiation of slow crack growth.

.19
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moving air current or shock waves.

The moire fringes can be generated by holographic interfermetry.

Referred to as "intrinsic holographic moire", these fringes can be recorded
by using the basic setup shown in Figure 10 [30). The reference state is

obtained by a single exposure of the unloaded specimen. Rigid body motions of

the loaded specimen are compensated by displacing the reference state and

observing the fringe contrast in the TV monitor. The u and v fringe patterns

are recorded on tape or alternatively photographed directly.

Laser Speckle Method

Despite its many implied applications in fracture mechanics [31, 32],

literature is void of useful data which has been generated by the speckle

method. With its high sensitivity, i.e. u and v displacement measurements of

the order of 0.005 mm, the laser speckle method should find wide ranging

applications in experimental fracture mechanics. By using the digital imaging

technique [33, 34) to cross correlate the two speckle images generated by the

unloaded and loaded specimens, the method provides an efficient procedure for

processing the imense amount of data and for easy access to graphic

peripherals.

Hybrid Experimental-Numerical Analysis

One of the major obstacle, which hinders the progress of experimental

ductile fracure research, is the undefined crack-tip states of stress and

strain in the presence of large scale yielding. Since the 1/ (- singular
state in linear elastic fracture mechanics is a physical impossibility which

successfully models brittle fracture, similar phenomenological model could

be developed for a crack under large scale yielding. A popular and possibly

over-exploited such model is the Dugdale strip yield zone which conveniently

reduces the elastic-plastic crack-tip state to an elastic one. The Dugdale

strip yield model used in a recent analysis [37) is a modification of the

classical Dugdale model where higher order terms were added to increase the

number of disposable parameters. Experimental data is then used to fit

the disposal paramete assocl .d with the Dugdale model, which is modified

to fit the complex stat( -sociated with large scale yielding, just as the

stress Intensity factor is determined from photoelasticity and moire fringe

data. The adequacy of such model can be verified by the matching other crack-
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tip data which is not used in the fitting process but which is generated

numerically by the Dugdale model and independently by the experiment. The

extensive numerical experimentation neccessary for this verification study in
essence replaces the finit1e element or boundary element method used in t:he

traditional hybrid experimental-numerical stress analysis technique [36J. The

verified modified Dugdale model through the generation mode of hybrid experi-

mental-numerical analysis can then be used to generate numerically various

fracture parameters for evaluation.

The utility of the hybrid experimental-numerical analysis is demonstrated

by a recent investigation on stable-crack growth under mixed-mode loading

[373. Isochromatics in a 1.6-mm thick polycarbonate tensile specimens with

central slanted crack were recorded during a continuing stable crack growth

period. The resultant Z-shaped crack was modeled by a straight Dugdale crack,

which was modified to account for the residual stresses left behind in the

wake of the rapidly extending crack, as shown in Figure 11. The modification

consisted of two unknown tangential forces acting at the physical crack tip.

Lengths of the Dugdale strip yield zones ahead of the crack tip were measured

from the photoelastic records E37). These lengths coincided with the length

of the theoretical values of the horizontal crack thus justifying the use of

the model of Figure 11 to represent the Z-shaped cracks. The crack-tip stress

field which is represented by a polynomial stress function of the crack-tip

coordinates together with the two unknown tangential forces were fitted to the

recorded elastic isochromatics surrounding the plastic region using an over-

deterministic fitting routine [38). Figure 12 shows the near- and far-field

isochromstics which were regenerated by using the modified Dugdale model and

those obtained by photoelasticity. Figure 13 shows the crack tip opening

angle (CTOA), which was computed by using the modified Dugdale model, for the

two intial crack geometries to be almost constant during the stable crack

growth process.

While the hybrid experimental-numerical technique may not provide the

micromechanics Insight to crack-tip mechanics. it can be used to effectively

extract fracture parameters which other wise cannot be measured directly.

Caustic Method

The method of caustics is becom#,g a popular technique for measuring the

static and dynamic stress intensity factors for plane-stress problems In

i7



linear elastic fracture mechanics. Caustic can also be generated by any

deformed specimen surface including the obvious dimpling surrounding a ductile

crack. Rosakis and Freund [39) used an asymptotic elastic-plastic analysis

to relate this dimpling to a plastic Intensity factor. By postulating an HRR

singularity, J-deformation theory of plasticity and the separation of theta

and r, the plastic strain in the thickness direction is obtained as

3P3 rr + EP

where the in-plane plastic strain components are given in terms of the stress

components as

ep 0 JE n+lr.e n- 1 )
rr = ko (Err- 2 (12)

The resultant caustic generated by the thickness direction strain of equation

(12) is shown in Figure 14. J-integral value can then be determined by

e0p E 0 (E1 (13)

where zO, d and o are the screen distance, specimen thickness and tensile

yield stress, respectively.

While further verification study is necessary, the caustic method

promises to provide an experimental procedure with which, the J-value can be

determnined directly using crack tip measurements in contrast to the ASTM

12



_ designated far-field procedure which is based on many simplifying assumptions.

2-0 Dynamic Fracture Mechanics

As mentioned in the Introduction, literature is abundant with experimen-

tal results on linear elastic dynamic fracture using dyanmic photoelasticity

and dynamic caustics. Experimental as well as data processing procedures for

these two techniques are continually being improved and their domain of appli-

cation is being extented. One such extension is the use of the hybrid experi-

mental-model analysis for modeling the Dugdale strip yield zone ahead of a

rapidly tearing crack [373. Likewise the caustic method with its asymptotic

elastic-plastic solution could be extended with relative ease to analyze

problems involving rapid tearing.

CLOSING COMMENTS

While no claim is made for completeness# most of the significant new

experimental techniques for crack tip mechanics hopefully have been mentioned

In this paper. The potential of applying some of the 2-D techniques# which

were listed under specific fields in crack tip mechanics, to other fields

obviously must be explored.
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